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a b s t r a c t

A problem of the pressure relaxation in a borehole after its “depressurization” is considered. An integral
equation describing the evolution of the pressure in the borehole is obtained. It is shown that, by a choice
of the initial bulk gas content and the height of the Impermeable part of the borehole, it is possible to obtain
that the half-period of the pressure relaxation in the borehole lies within limits which are convenient for
the technical realization of “depressurization”. Nomograms are constructed which enable one, when the
values of the borehole parameters are known, to estimate the permeability of the surrounding porous
medium using the half-period of the pressure relaxation.

© 2009 Elsevier Ltd. All rights reserved.

In practice, hydrodynamic methods of investigating a stratum are mostly used to obtain information on the collector properties of the
stratum. The most widely used method is to plot curves of the presurre relaxation at the end face of a borehole and of the changes in the
output and pressure.1,2 Several methods exist for determining the collector characteristics of a stratum using the curve of the pressure
relaxation in the borehole, including the methods of arbitrary and characteristic points.1

Below, we propose that the half-period for the pressure relaxation in a “depressurized” borehole can be is used to estimate the collector
characteristics of a stratum. We shall call the period of time during which the difference between the pressure in the borehole and the
pressure in the porous medium hlaves in value the half-period for the pressure relaxation. A sharp decrease in the pressure in the borehole
is called a “depressurization”. It can be achieved, for example, by collapsing containers, containing gas at a lower pressure than the pressure
in the stratum, which have been lowered into the borehole.

The pressure relaxation in a cavity surrounded by a porous and permeable rock has been investigated.3,4 The problem of the pressure
testing, of a liquid-filled cavity (a crack or a cylindrical or spherical void) By injecting of a certain amount of gas has been considered and
the dependence of the relaxation time on the initial pressure drop has been studied for the case when the whole of the lateral surface of
the borehole is permeable.3 The evolution of the pressure in a cavity surrounded by a porous medium saturated with gas after an explosion
has been investigated.1

1. Basic equations

Suppose, in the initial state (t < 0), the pressure of a liquid in the whole of an unbounded porous stratum outside a borehole (Fig. 1) is
constant and equal to p′

0. We will consider the relaxation of pressure p in a certain segment of the borehole between two impermeable
end boundaries to the value p′

0. Suppose an initial pressure p0(p0 ≤ p′
0) is established in the borehole at the instant t = 0.

In order to describe the pressure relaxation, we will assume that the pressure is uniform within the borehole (we will neglect the
hydrostatic pressure drop) and that there are no phase transitions (the mass of gas within the borehole remains unchanged). The isolated
segment of the borehole of height h consists of a permeable part of height hop and an impermeable part of height hcl. We will assume that
the permeable part penetrates the whole thickness of the stratum, and the wall of the remaining part of the borehole, that is, above the roof
and below the base, is impermeable (the impermeable part). The ends of the isolated segment of the borehole, and the roof and the base
of the stratum are also impermeable. By covering the end faces of the isolated segment of the borehole at different places, it is possible to
control the height of the impermeable part, while the height of the permeable part is assumed to be considerably greater than its radius a.
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Fig. 1.

We will write the law for the change in the mass of the liquid ml within the borehole in the form

(1.1)

where S is the area of the lateral surface of the borehole through which liquid seepage occurs, �l is the liquid density, �a is the rate of
seepage through the borehole walls, and hg and hl are the reduced heights of the parts of the borehole occupied by the gas and the liquid.

We will take the equation of state of the liquid in the borehole and the porous medium in the acoustic approximation

(1.2)

where Cl is the velocity of sound in the liquid and �l0 is the initial liquid density of the liquid. We will assume that the gas is calorifically
perfect and its behaviour obeys the polytropic law

(1.3)

where � is the polytropic exponent and hg0 is the reduced height of the part of the borehole occupied by the gas phase at the initial instant.
We will introduce the volume fraction of the gas �g in the borehole as �g=hg/h.
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We will use Darcy’s law

(1.4)

to describe the inflow of the liquid into the well, where �′ and p′ are the seepage rate and the liquid pressure of the liquid in the porous
medium, k is the permeability of the porous medium and �l is the dynamic viscosity of the liquid.

The plane-radial seepage of the liquid in the porous medium outside the borehole is described by the piezoconduction equation5

(1.5)

where m is the porosity.
The assumptions mentioned above enable us to write the initial and boundary conditions for Eq. (1.5) in the form

(1.6)

(1.7)

where p(t) is the current unknown pressure in the borehole. Since the liquid density depends only slightly on the pressure (�l–�l0��l), we
shall neglect the change in the liquid density on the right-hand side of Eq. (1.1), putting �l = �l0

From Eq. (1.1), we obtain

(1.8)

We determine the liquid pressure in the porous medium outside the borehole using piezoconduction Eq. (1.5). The solution of this
equation, obtained using the Duhamel principle with initial and boundary conditions (1.6) and (1.7), has the form

(1.9)

where J0(z) and Y0(z) are zero order Bessel and Neumann functions. The function U(r,t) is the solution of Eq. (1.5) with the initial and
boundary conditions 6

After substituting expression (1.9) into equality (1.8) and some reduction, we obtain the following non-linear equation describing the
evolution of the pressure in the “depressurized” borehole

(1.10)

Equation (1.10) was obtained and analysed earlier 3 for the case when hcl = 0.
In the case of a weak initial pressure drop (�p0 = p′

0 − p0 � p0), from Eq. (1.10) we have

(1.11)

Here,

The kernel of integral equation (1.11) has the following expansions for small and large values of the argument 3

(1.12)
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(1.13)

where C is Euler’s constant.
The first two terms of expansion (1.12) can be used 4 for the kernel in the time interval 0 < t ≤ 10ta. In this case, the solution of integral

equation (1.1) can be written in the form

(1.14)

Solution (1.13) describes the dynamics of the initial stage of the pressure relaxation in the borehole. If the relaxation half-period tp

satisfies the condition tp≤10ta, then this solution can be used during the whole half-period.
A somewhat different approximate analytical solution can be constructed for the concluding stage of the pressure relaxation. We will

assume that, at this stage starting from a certain instant t*, the current pressure drop in the borehole and the inflow of liquid through its
wall are related by the equality

(1.15)

which follows from the known self-similar solution 7 when t�ta. Then, substituting expression (1.15) into Eq. (1.1), we obtain the
solution for the final stage of the pressure relaxation in the form of the following quadrature

(1.16)

Here, p* is the pressure in the borehole at the instant t = t*, and �g and �l are functions of the pressure which are defined by expressions
(1.2) and (1.3). In the case of a weak initial pressure drop, it follows from equality (1.16) that

(1.17)

2. Dynamics of pressure relaxation in the borehole

The curves for the relaxation of the dimensionless pressure �P in the borehole after its “depressurization” for different values of the
height of the impermeable part hcl, obtained by numerical solution of Eq. (1.10), are shown on the left-hand side of Fig. 2. The values of the
parameters of the borehole, the porous medium, the liquid and the gas were as follows:

Fig. 2.
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Fig. 3.

Unless otherwise stated, the same values were also used for the parameters of the borehole - porous medium system in the subsequent
numerical examples. The points on the abscissa t1, t2 and t3 are the half-periods for the pressure relaxation for the corresponding curves.
It is clear that the half-period for the pressure relaxation depends on the height of the impermeable part of the borehole hcl.

The curves for the pressure relaxation in a borehole for hcl = 100 m and different values of the permeability k are shown on the right-hand
side of Fig. 2. It is clear that the half-period for the pressure relaxation tp decreases in inverse proportion to the permeability k.

The dependence of the dynamics of the pressure relaxation in a borehole on the values of the parameter �g0 and the ratio of the
parameters hcl/hop was analysed in a similar manner and showed that the half-period for the pressure relaxation tp increases as the values
of these parameters increase.

The dependence of the time tp on the permeability k is shown in Fig. 3 for hcl = 75 and different initial gas contents �g0 (above)) and
for �g0 = 0.75 and different values of the height of the impermeable part of the borehole hcl (below). The relations can be considered as
nomograms for determining the value of the permeability k of the porous medium surrounding the borehole. For this purpose, the value of
the half-period for the pressure relaxation tp is determined using the experimental curve for the pressure relaxation in the “depressurized”
borehole. Then, using the known values of �g0=0.75 and hcl, one or other line is chosen in the nomogram, on which the point corresponding
to the time tp is determined. The abscissa of this point then corresponds to the required value of the permeability k.
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